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1. Bits

A bit is a number that is a zero or one. It is the most funda-
mental material presented here.

Bit ∈ {0, 1}

One signifies value of itself, as well as a difference between num-
bers. Zero signifies no value of itself, and no difference between
numbers.

0 1 0 1 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0

See the individual bits, each a one or zero. See them as a group,
and there is continuity and change.

0 0 1 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1

On the left is mostly change. On the right is mostly continuity.

0 1 1 0 0 0 1 1

The difference between one and zero is one, hence one signifies
change. The difference between two ones or two zeros is zero, hence
zero signifies continuity.

2. Bytes

A byte is a group of bits in a row, and has two ends. It may
have as few as one bit. Each end is a bit that is adjacent to only
one other bit, while the other bits are adjacent to two.

[ 0 0 0 0 1 1 1 0 1 0 1 ] [ 0 1 0 1 0 ] [ 1 0 ]

There is not one direction from one end to the other, so there
is not a first bit and a last bit. Whether the two ends are distinct
depends on the bits.

[ 0 0 0 1 0 1 1 1 0 1 0 0 0 ] [ 0 1 0 1 0 ] [ 1 1 1 1 0 0 0 0 ]

Square brackets may indicate bytes if needed, for example, to
distinguish from a set. Commas are not used here.
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3. Bitloops

A bitloop is a byte without ends.
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The entirety of this work is directly consequential to this con-
cept. All the things that follow are original observations about
what bitloops are and how they interact.

For the sake of communication, bitloops are often displayed as
a straight row of bits, with the implication that the bits on the
ends are connected. Consequently, there may be multiple ways to
display the same bitloop. For example:

[ 0 1 0 0 0 1 0 ] [0 0 1 0 0 1 0 ] [1 0 0 0 1 0 0 ] [ 1 0 0 1 0 0 0 ]

Each of these signify a distinct byte, and all of them signify the
same bitloop. Three more bytes that have not been displayed also
signify the same bitloop.

Another useful interpretation of the bitloop is a byte that re-
peats indefinitely from both ends. The repetitions are like reflec-
tions in a mirror, which are only apparent. Notice how in this
manner, the end bits in a byte cannot be determined. All that can
be determined is the number of consecutive bits in a byte that is
not itself repetitive.

. . . 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 . . .

[ 0 0 1 1 1 ] [ 0 1 1 1 0 ] [ 1 1 1 0 0 ] [1 1 0 0 1 ] [1 0 0 1 1 ]

All five of these bytes generate the same sequence when re-
peated end to end.
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4. Bitloop Classes

The set of all bytes that may be derived from the same bitloop
(as above) is here referred to as a bitloop class. For example, here
are eleven bytes derived from a bitloop with eleven bits.

1

1

1

1

00

0

0 0
0

0

1 0 1 0 0 0 0 1 1 0 0

0 1 0 0 0 0 1 1 0 0 1

1 0 0 0 0 1 1 0 0 1 0

0 0 0 0 1 1 0 0 1 0 1

0 0 0 1 1 0 0 1 0 1 0

0 0 1 1 0 0 1 0 1 0 0

0 1 1 0 0 1 0 1 0 0 0

1 1 0 0 1 0 1 0 0 0 0

1 0 0 1 0 1 0 0 0 0 1

0 0 1 0 1 0 0 0 0 1 1

0 1 0 1 0 0 0 0 1 1 0

Bitloop classes are sets, and unlike the bits of a byte or bitloop,
all the elements of a set must be distinct. The bitloop below has
twelve bits, but only three distinct bytes in its bitloop class.

1
11

1

1
1 1

1

0

0

0

0

1 1 0 1 1 0 1 1 0 1 1 0

1 0 1 1 0 1 1 0 1 1 0 1

0 1 1 0 1 1 0 1 1 0 1 1

5. n

The letter n refers to the number of bits in a byte or bitloop.
For any bitloop with n bits, the number of bytes in its bitloop
class is also n, unless it consists of a smaller repeating byte, later
referred to as byte B.

6. A Bitloop Class in Music

The seven modes of the diatonic scale may be interpreted as
seven bytes in a bitloop class. In each mode, seven notes are played
in ascending or descending order, and span a twelve-note octave.
Notes are skipped according to the same recursive squence of in-
tervals: skip one, skip one, skip none, skip one, skip one, skip one,
skip none.
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Allow one to signify skip one, and zero to signify skip none, and
the modes may be represented by the bitloop class below. Notice
the bits do not signify notes, but intervals between notes.

11

1
1 1

0
0

1 1 0 1 1 1 0

1 0 1 1 1 0 1

0 1 1 1 0 1 1

1 1 1 0 1 1 0

1 1 0 1 1 0 1

1 0 1 1 0 1 1

0 1 1 0 1 1 1

7. L

This letter refers to a kind of set. It is the set of all bytes with
n bits, where n is the same value for every byte. Thus for every
positive interger there is a corresponding L. The cardinality of L,
or the number of bytes it consists of, is always a power of two.

Ln refers to the set for a specified n, and n may be replaced by
a number. For example:

L1 = { [ 0 ] , [ 1 ] }
L2 = { [ 0 0 ] , [ 1 1 ] , [ 0 1 ] , [ 1 0 ] }

8. Inverses

In our present context, the inverse function regards a byte or
bitloop. The function transforms a byte or bitloop so all its zeros
become ones, and all its ones become zeros. The function is bijec-
tive and involutary. In other words, every byte or bitloop has one
inverse, and is the inverse of its inverse. Two bytes or bitloops that
are the inverses of each other must have the same number of bits.
Here are some inverse pairs:

[ 1 1 1 0 0 1 0 ] [ 0 ] [ 0 0 1 1 ] [ 0 0 0 0 0 0 1 0 1 0 0 0 ]

[ 0 0 0 1 1 0 1 ] [ 1 ] [ 1 1 0 0 ] [ 1 1 1 1 1 1 0 1 0 1 1 1 ]

If the bytes of an inverse pair belong to different bitloop classes,
the two bitloop classes consist entirely of such inverse pairs. Thus
bitloops also form inverse pairs, because the bytes in their bitloop
classes all form inverse pairs with one byte from each bitloop.
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Here are two bitloop classes, left and right, with ten inverse
pairs between the two.

[ 0 0 0 0 0 0 0 1 0 0 ] [ 1 1 1 1 1 1 1 0 1 1 ]
[ 0 0 0 0 0 0 1 0 0 0 ] [ 1 1 1 1 1 1 0 1 1 1 ]
[ 0 0 0 0 0 1 0 0 0 0 ] [ 1 1 1 1 1 0 1 1 1 1 ]
[ 0 0 0 0 1 0 0 0 0 0 ] [ 1 1 1 1 0 1 1 1 1 1 ]
[ 0 0 0 1 0 0 0 0 0 0 ] [ 1 1 1 0 1 1 1 1 1 1 ]
[ 0 0 1 0 0 0 0 0 0 0 ] [ 1 1 0 1 1 1 1 1 1 1 ]
[ 0 1 0 0 0 0 0 0 0 0 ] [ 1 0 1 1 1 1 1 1 1 1 ]
[ 1 0 0 0 0 0 0 0 0 0 ] [ 0 1 1 1 1 1 1 1 1 1 ]
[ 0 0 0 0 0 0 0 0 0 1 ] [ 1 1 1 1 1 1 1 1 1 0 ]
[ 0 0 0 0 0 0 0 0 1 0 ] [ 1 1 1 1 1 1 1 1 0 1 ]

9. Half Inverses

If both bytes of an inverse pair belong to the same bitloop class,
the corresponding bitloop does not have an inverse. These bitloops
and the bytes in their bitloop classes are referred to as half inverse.

If a half inverse byte or bitloop is split in half, the two halves are
an inverse pair. A bitloop class with one half inverse byte consists
entirely of half inverse bytes. For example, here are the eight bytes
of a single bitloop class, again with inverse pairs to the left and
right of each other. The corresponding bitloop does not have an
inverse.

[ 1 1 1 1 0 0 0 0 ] [ 0 0 0 0 1 1 1 1 ]
[ 1 1 1 0 0 0 0 1 ] [ 0 0 0 1 1 1 1 0 ]
[ 1 1 0 0 0 0 1 1 ] [ 0 0 1 1 1 1 0 0 ]
[ 1 0 0 0 0 1 1 1 ] [ 0 1 1 1 1 0 0 0 ]

10. Partition by Inverses

Every byte has one inverse, so it may be said that L consists
entirely of inverse pairs. This set of pairs is also referred to as a
partition of L. Another partition of L with respect to inverses is
two subsets that separate every byte from its inverse. For example,
L3 consists of eight bytes:

[000] [111] [001] [010] [100] [011] [101] [110]

6 27



Here the inverse pairs are arranged together:

[000] [111] [001] [110] [100] [011] [101] [010]

Here they are kept separate:

[000] [001] [010] [100] [111] [110] [101] [110]

11. Partition by Bitloop Classes

L can be partitioned into bitloop classes, such that every byte in
L belongs to one bitloop class. Although bitloops are not elements
of L, bitloops can be used to represent its bytes.

Take for example L5, the set of all bytes with five bits. It
consists of 32 bytes, and is partitioned into eight bitloop classes.
With the understanding that the cardinality of L5 is 32, the reader
can confirm the bitloops shown represent the entire set.

[ 0 0 0 0 0 ] [ 0 0 1 0 1 ] [ 1 1 0 1 0 ]

[ 1 1 1 1 1 ] [ 0 0 0 1 1 ] [ 1 1 1 0 0 ]

[ 1 1 1 1 0 ] [ 0 0 0 0 1 ]

Each bitloop on the left represents a bitloop class consisting
of one byte, and the display of that byte is identical. The other
bitloops all represent bitloop classes consisting of five bytes each.
2× 1 + 6× 5 = 32

In the effort to display only what is necessary to determine
a complete set, one bitloop from each inverse pair may also be
discarded from the display. Here is L5 again, with half the bitloops:

[ 0 0 0 0 0 ] [ 0 0 1 0 1 ] [ 0 0 0 1 1 ] [ 1 1 1 1 0 ]

Here’s L6, represented by bitloops, including only one bitloop
from each pair of inverse bitloops. Two of them are half inverse,
so the total amount of bitloops signified is 2 + 2× 6 = 14.

[ 0 0 0 0 0 0 ] [ 0 1 0 1 0 1 ] [ 0 0 0 1 1 1 ] [ 0 1 1 0 1 1 ]

[ 0 0 0 0 0 1 ] [ 0 0 0 0 1 1 ] [ 0 0 0 1 0 1 ] [ 0 0 1 0 1 1 ]
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12. B

. . . 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 . . .

Recall the indefinitely repeating byte that resembles the bit-
loop. Compare it to a byte that repeats, say, forty times. Consider
the result as a byte in its own regard, for it has definite ends. There
are other bytes that seem to repeat in it, but their iterations on
the ends are not complete. B refers to the byte that repeats in
complete iterations. B itself must also consist of a B that occurs
once. Every byte, no matter what it is, has its own B, and only
one.

[ 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 ]

Displayed is a byte with 24 bits. The B that corresponds is
[ 0 0 1 ]. In a byte with all zeros or all ones, B consists of one bit
and occurs n times. In bytes that are not repetitive, B occurs once.
The cardinality of any B must be a factor of n.

byte [ 0 0 0 0 ] [ 0 1 0 1 0 1 ] [ 0 1 1 0 0 1 0 0 1 1 0 0 1 1 ]

B [ 0 ] [ 0 1 ] [ 0 1 1 0 0 1 0 0 1 1 0 0 1 1 ]

13. Partition by B

No more than one B may correspond to a given byte, so Ln may
be partitioned according to the factors of n. In such a partition
there is a subset for every factor of n, and every byte in L belongs
to one subset.

Of the sixteen bytes in L4, two bytes have a B with one bit,
two bytes have a B with two bits, and twelve bytes have a B with
four bits. Below the bytes of L4 are represented by bitloops, and
inverses are not included.

bits in B 1 2 4

bitloops [ 0 0 0 0 ] [ 0 1 0 1 ] [ 1 1 0 0 ]

[ 0 1 1 1 ]
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Of the 64 bytes in L6, two bytes have a B with one bit, two
bytes have a B with two bits, six bytes have a B with three bits,
and 54 bytes have a B with six bits.

bits in B 1 2 3 6

bitloops [ 0 0 0 0 0 0 ] [ 0 1 0 1 0 1 ] [ 0 1 1 0 1 1 ] [0 0 0 1 1 1 ]

[ 0 0 0 0 0 1 ]

[ 0 0 0 0 1 1 ]

[ 0 0 0 1 0 1 ]

[ 0 0 1 0 1 1 ]

14. la, lb and lc

Another way to partition Ln according to the factors of n is to
use the same subset for every factor that is not 1 or n. This leaves
three subsets, referred to here as la, lb and lc.

subset la lb lc

factor of n 1 other n

For any n, la always consists of two bytes, and when n is a
prime number, lb is empty.

15. Proof About Prime Numbers

{n ∈ P | (2n − 2)/n} ⊂ N1

la, lb and lc happen to identify a property of prime numbers:
For any prime number n, 2n − 2 is divisible by n. The reason is
that 2n − 2 is the number of bytes in Ln minus those in la. This
leaves lb and lc, and there are not any bytes in lb, because there are
no factors of n besides 1 and n. Finally the number of bytes in lc
is always divisible by n. The reason has to do with bitloop classes.
A byte whose B consists of n bits belongs to a bitloop class having
n bytes. So for any n, lc can be partitioned into bitloop classes
such that every bitloop class consists of n bytes. So the number of
bytes in lc is divisible by n, and 2n − 2 is divisible by n when n is
prime.

924



16. Conjecture About Prime Numbers

{n ∈ N1∆P | (2n − 2)/n} ⊂ R∆N1

Maybe it is true that if n is not prime, then 2n − 2 is not
divisible by n. It is at least calculating n for values up to fifty.
Other than that, the problem reduces slightly. 2n− 2 is the sum of
the cardinalities of lb and lc, and it is given from the last proof that
lc is divisible by n. What remains to be seen is if lb is divisible by n.
Also, the value of n may be generalized to include prime numbers,
since when n is prime, lb is empty, and zero is not divisible by n.

{n ∈ N1 | |lb|/n} ⊂ R∆N1

17. Links

absolute difference 0 0 1 1
adjacent bits 0 0 1 1 0 1 1 0

For any given bitloop, the difference between any pair of adja-
cent bits is either one or zero. Because there is no direction from
one end of the bitloop to the other, the difference is considered
absolute, or positive.

0 1 0 1 1 1 0 0 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0
0 0 1 1 0 1 0 0 0 1 0 1 0 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1 1

A bitloop with n bits has n differences. These differences have
an order just like the the bitloop they are derived from, so they
too may be interpreted as the bits of a bitloop.

link 0 1 0 1 1 1 1 0 0 1 1 1 1 1 0 0 0 0 0
sublink 0 0 1 1 0 1 0 1 1 1 0 1 0 1 0 0 0 0 0

A bitloop that is derived from another bitloop in this way is
referred to as a link. The bitoop it is derived from is referred to as
a sublink.
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Properties of links:

1. For every bitloop there is a corresponding link.
2. Two bitloops with the same link are an inverse pair.
3. A link has an even number of ones.
4. A half inverse bitloop has a link whose corresponding

B occurs twice.

link 0 0 0 1 0 0 0 1 0 0 1 1 0 0 1 0 0 1 1 0 0 1
half inverse 0 0 0 0 1 1 1 1 1 1 1 0 1 1 1 0 0 0 1 0 0 0

In rare instances bitloops may be their own links, such as these:

[ 0 ] [ 0 1 1 ] [ 1 1 1 0 0 1 0 ]

18. Link Notation

The display of links requires particular attention in order to
discuss their actual propeties. A unique challenge in the study of
bitloops is to distinguish to what extent something is a property of
bitloops or is a method to display them.

0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1
↑ 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 0 1

link iterations 1 0 1 0 1 0 1 0 0 1 1 0 1 1 0 1 1
↑ 0 0 1 1 0 0 1 1 1 0 1 1 0 1 1 0 1

0 0 0 1 0 0 0 1 0 1 1 0 1 1 0 1 1

Because bitloops are displayed as a row with two apparent ends,
the bits on the ends don’t have a convenient place above and be-
tween them to display their absolute difference. So a convention
is to display the difference on the right or left side of the link, as
shown above. Links of links may be stacked upon each other, and
in such case left and right alternate each row up.

. . . 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 . . .

Recall again our friend, the indefinitely repeating byte. It has
the advantage of displaying every one of its bits between two neigh-
bors. One may wish to display a bitloop a couple extra times, just
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to be able to see it without those ends, which are not true properties
of the bitloop anyways. Then again, what display would be a true
property, and what is a property without its display?

1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1
1 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0
0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1

0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1

19. Link Orbits

A series of successive links eventually begins to repeat itself,
entering into a cycle, or link orbit. The seasons of the year are
comparable to four links in a link orbit. Also, every time a season
comes around again, it’s a little different than the year before.
Links usually come back with a rotated order. Bitloops with an
even number of bits usually rotate halfway around.

link orbit: [ 1 1 1 0 0 1 0 ] → loop

1 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 0
0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 1

1 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0

Above, the bitloop [1110010] repeats four times per row. It is its
own link, so each iteration is a complete orbit. For every iteration,
the bits shift three to the left (or equivalently, four to the right).
One could say, for each row the bitloop is represented by a diferent
byte in its bitloop class, repeating four times.

link orbit: [ 0 0 0 1 1 ] → [ 0 0 1 0 1 ] → [ 1 0 1 1 1 ] → loop

1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1
1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0
1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0

1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1
0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1

0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1
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In a link orbit, every bitloop has two neighbors. The bitloop
must be the link of one and the sublink of the other; it cannot be the
link of both or the sublink of both. This rule is enough to require
a direction of transformation (clockwise or counter-clockwise) that
is consistent among all adjacent bitloops.

20. Link Orbit Inverses and Sublink Trees

1 1 1 1 0

0 0 0 0 1

0 0 0 1 1

1 1 1 0 0

1 0 0 1 0

0 1 1 0 1

Every link in a link orbit has two sublinks; one of them is in the
link orbit, and one is not. The sublink that is not in a link orbit is
referred to as a link orbit inverse.

A link orbit inverse may have its own sublink or pair of sub-
links, and depending on the bitloops, a succession of sublinks may
continue to whatever end. This tree that begins with a link orbit
inverse is referred to as a sublink tree. Every sublink tree that
corresponds to the same link orbit consists of the same number of
bitloops. The set of bitloops in a link orbit and every sublink tree
that corresponds is referred to as a bitloop chain.

21. Bitloop Chains

Without reference to link orbits or sublink trees, a bitloop chain
may be defined as a set of bitloops, such that every bitloop that
is a link or sublink of an included bitloop is also included, and
no bitloop that is not a link or sublink of an included bitloop is
included.
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1 1 1 1 0 0

0 0 0 1 0 1

0 0 0 0 1 1

1 1 1 0 1 0

0 0 0 0 0 1

1 1 1 1 1 0

0 0 1 0 1 1

1 1 0 1 0 0

Here is a bitloop chain with six bits per bitloop. It has two
bitloops (or links) in its link orbit, and three bitloops (or sublinks)
in each of its sublink trees. Each link orbit inverse has two sublinks.

Four different bitloop chains correspond to the graph above.
Each chain has a link orbit with six links, and six sublink trees
that each consist of three sublinks. The four bitloop chains all
have bitloops with ten bits. Each chain is a host to 24 bitloops,
each with ten bytes in its bitloop class, so the four chains together
account for 960 distinct bytes. The total number of bytes with ten
bits (or the cardinality of L10) is 1024, so there are only 64 more
bitloops with ten bits, and they belong to other bitloop chains.

14

Below is the same link orbit again, repeated the same number
of times. The difference is how it is displayed. Instead of ones
and zeros, lines connect where ones normally would be, and black
triangles fill in where there would be two adjacent ones with a one
below. All the data is still there, but the interpretation emphasizes
some properties that may otherwise be overlooked.

Any tessellation displayed in this fashion consists entirely of
these white hexagons and black triangles. The black triangles are
always the same size. There are hexagons of different sizes, but
only the bottom, upper right, and upper left sides vary in length.
It seems to me that a tessellation cannot be constructed with only
these materials if it does not correspond to a bitloop chain.

The pages that follow contain a selection of graphs and tessel-
lations that correspond to bitloop chains.

Visit www.symbolfigures.org for a more complete catalogue of
chains and their corresponding graphs and tessellations.
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Some bitloop chains have a link orbit with few links and sublink
trees with many sublinks; some bitloop chains have a link orbit with
many links and sublink trees with few sublinks. For any bitloop
chain whose bitloops have n bits, such that n is a prime number, its
sublink trees consist only of a link orbit inverse with no sublinks.

22. Power of Two Chains

0 1

0 0 1 1 0 1

0 0 0 0 1 1 1 1 0 1 0 1 0 0 1 1

0 0 0 1

1 1 1 0

For any Ln such that n is a power of two, all bitloops that
partition Ln belong to the same bitloop chain. For any other n,
Ln consists of multiple bitloop chains. Above are the chains for
L1, L2, and L4. Below is the chain for L8, with B standing in for
each bitloop. For example, the bitloop [00000000] is shown as [0].

0 1 01
0011

00001111

0001

1110

00101101

00000101

11111010

00011011

11100100

00000011

11111100

00110101

11001010

00001001

11110110

00011101

11100010

00000001

11111110

01010111

10101000

00010011

11101100

00110111

11001000

00000111

11111000

01011011

10100100

00001011

11110100

00001101

11110010
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Recall that the bitloop class of a symmetric bitloop may con-
tain an asymmetric byte as long as the reverse of that byte is also
included. This is the case with symmetric chains. A chain is sym-
metric if either all of its bitloops are symmetric, or for any included
asymmetric bitloop, its reverse is also included.

26. Tessellations

Here is a link orbit consisting of two links, displayed once at
the top, and then repeated three times per row and fourteen times
per orbit.

0 0 0 1 0 1
1 1 1 1 0 0

1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0
1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1
0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1
1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0
1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0
1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1
0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1
1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0
1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0
1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1
0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1
1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0
1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0
1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1
0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1
1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0
1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0
1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1
0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1
1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0
1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0
1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1
0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1
1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0
1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0
1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1
0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1
1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0
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23. Partition by Bitloop Chains

Every bitloop belongs to one bitloop chain, thus Ln can be
partitioned into bitloop chains. First the bytes of Ln are parti-
tioned into bitloop classes, and then their respective bitloops can
be partitioned into bitloop chains.

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14

1 1 1 12 2 3 3 3 45 5 7 17

Listed above are the number of bitloop chains that partition L,
for values of n from one to fourteen.

I can actually only confirm sixteen bitloop chains that partition
L14. This amounts to 16,160 bytes, out of a total 16,384, or 214. I
cannot find any of the remaining 224. However, one of the sixteen
known chains has 224 bytes, so my guess is the missing bitloops
comprise the same kind of chain.

24. Byte Symmetry

Another function of a byte is to reverse the order of its bits from
one end to the other. Like the inverse function, the reverse function
is bijective and involutary. However, not every byte has a distinct
reverse. An asymmetric byte has a reverse, while a symmetric byte
does not.

[ 0 0 0 0 0 1 1 0 0 1 0 ] [ 0 1 0 0 1 1 0 0 0 0 0 ] [ 0 0 0 1 1 0 0 0 ]

The bytes on the left are asymmetric, and each is the reverse of
the other. The byte on the right is symmetric and does not have a
distinct reverse.

Symmetric and asymmetric bytes can belong to the same bit-
loop class. Look for the reverse of every asymmetric byte in the
bitloop class below. One byte doesn’t have a pair because it is
symmetric.

11

1
1 1

0
0

1 1 0 1 1 1 0

1 0 1 1 1 0 1

0 1 1 1 0 1 1

1 1 1 0 1 1 0

1 1 0 1 1 0 1

1 0 1 1 0 1 1

0 1 1 0 1 1 1
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25. Bitloop Symmetry

A bitloop is referred to as asymmetric if its bitloop class con-
sists of asymmetric bytes and the reverses of those bytes comprise
a different bitloop class. Any other bitloop is symmetric. The bit-
loop class corresponding to a symmetric bitloop may consist of all,
some or no asymmetric bytes. But for any asymmetric byte that
is included, its reverse is also included.

11

1 1 1
1

0
0

0
0

0

sym.

1
1

1
1

00
0

0

0 0
0
0

sym.

1
111

1
1
1

1

0

0 0 0
0

asym.

A convenient way to determine the symmetry of a bitloop is to
first display its bits in a circle. Then, if an axis of symmetry can
be drawn across the bitloop, it is considered symmetric. The line
may pass through or between one or two bits.

0 0 1 0 0 0 1 1 1 1 0 0 0 1 0 0
0 1 0 0 0 1 1 0 0 1 1 0 0 0 1 0
1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1
0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0
0 0 1 1 0 0 1 0 0 1 0 0 1 1 0 0
0 1 1 0 0 1 0 0 0 0 1 0 0 1 1 0
1 1 0 0 1 0 0 0 0 0 0 1 0 0 1 1
1 0 0 1 0 0 0 1 1 0 0 0 1 0 0 1

Here are two bitloop classes corresponding to two asymmetic
bitloops. Reverse pairs of bytes are divided between the two classes.
The two bitloops representing these classes are also referred to as
a reverse pair.

A bitloop chain that includes an asymmetric bitloop may con-
sist entirely of asymmetric bitloops. If such is the case, the reverses
of all of those bitloops comprise their own reverse chain. Thus two
chains may form a reverse pair, and each chain is referred to as
asymmetric. The list from earlier of how many chains partition
each Ln counts one chain for each reverse pair.
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